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• ABSTRACT

Def ine a design to be any plaqar set S of known area A, but unknown

shape and location; more generally, a design can be any set in Rn of measure

A. For example, a design might be one floor of a warehouse, or a sports

arena of known seating capacity. Suppose the design to have, say , m users , or

evaluators, with user/evaluator i having a design disutility fun ction ~~
l<i<m , which can be defined for all points in the plane independently of the designs

of interest. Given any design 5, denote by G1(S) the disutility of S to user!

evaluator i where , by definition, G~ (S) is the supremum of f~ over the set S,

1 < i < m. Let G(S) be the vector with entries G~ (S)~ 1 < I < m, and

define a design to be efficient if it solves the vector minimization problem

obtained using the set of vectors {G(S):S a design). Given mild assumptions

about the disutility functions, and a sligh t ref inement of the design de—

• finition to rule out certain pathologies, we give necessary and sufficient

conditions for a design to be efficient, and study properties of efficient

designs. 

_ _ _ _ _ _ _ _ _ _ _ _ _  • •



1. INTRODUCTION

En this paper we consider the problem of characterizing efficient designs.

• To motivate the problem we first consider some examples; a precise problem

statement appears in Section 2. Examples of designs we have in mind might

include a single floor of a warehouse, or a sports arena, when either can

be idealized as a planar set S of known total area, A , but unspecified shape.

• Any design S must be contained in some given planar set L, which might be the

lot of land in which the design will lie. The design will have, say , m users,

with user i having a disutility function f1, where f1(x) is the disutility of

the point x in S to user i. For the warehouse problem f~ (x) might be the dis-

tance user i must travel, or pay to have traveled, in order to pick up an

item stored at x. For the sports arena example, f~(x) might be the dissat-

isfaction of customer i with a seat at location x. (If the arena is to

serve different purposes at different times, a customer using the arena at

different times might be represented by more than one disutility function.)

For a given design 5,

• G
i
(S) sup{f

i
(x) : x € S} , 1 < i < m

• represents the disutility of the design S to customer i, while

C(S) = (G1(S), ~~~~~~~~ 
C (S))

represents the disutility vector of the design S for all users. We call

a design S’~ efficient if whenever a n y  design ~S s a t i s f i e s

C(S) < G(S*), then it must be true that G(S) G(S*). An efficient design

thus solves a multiple objective optimization problem, and is Pareto

optimal [10].

- 

• 
We remark that an evaluation of a design as given by Ct(S) might occur

• • when disutility can only be measured on an ordinal scale (thus precluding

adding disutilities), or when users employ the design only intermittently

1 
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(as with a sports arena) and so might adopt the relatively simple evaluation

implied by the entries in G(S), or when users adopt a conservative approach

and are worried about the “worst case”. Alternatively, the disutility of

S to user 1, 0
1
(S), might be appropriate, in the warehouse context, when

the operator of the warehouse is more concerned with providing “quick ser-

vice” to users than with minimizing total operating costs.

Allowing for different design shapes may or may not be realistic, de-

pending upon the context. In some cases efficient designs should best be

viewed as design guidelines, rather than as final answers. Further, as is

typically the case with multiple objective optimization problems, many dif-

ferent designs can be efficient, and the problem remains of choosing among

such solutions. Nevertheless we feel that the knowledge of efficient designs

should be of value in helping to delimit the comparison of alternatives as

well as to define more sharply the design problem(s) of interest.

Eor purposes of the literature discussion we find it convenient to

consider a single point to be a degenerate design; the designs we study sub-

sequently in this paper are then nondegenerate designs. To the best of o~ r

knowledge the only work for the case when m is at least two and designs are

nondegenerate is by Chalmet, Francis, and Lawrence [3]. Given any (nonde—

generate) design S they consider the case where e 4ch term G~(S) is the in-

tegral, rather than the supremum, of the function f~ over the design S, and

obtain necessary and sufficient conditions for designs to be efficient. For

the case where m is one and designs are nondegenerate, Francis [5] has con-

sidered a stadium design problem, discussed in more detail in [6], which is

related to the design problems we consider. Corley and Roberts (4] and

Lowe and Hurter [12] have investigated minimizing integral functions over

(nondegenerate) planar sets in a market area context. In the latter of

2
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these two papers the authors make an assumption which we also make subse-

quently (although for different reasons) that certain contour lines have

measure zero. When a design is degenerate the design problem we consider

becomes the same as finding Pareto optimal solutions for the vector

... , f (x)). • For this latter problem there is, of course, a sub-

stantial literature ([10], [16], [18]), the discussion of which is beyond

the scope of this paper. We single out, however, the case where the

functions f~ are “planar” distances, say f .(x) = d(x, 
~~~ 

as this case

is quite close in spirit to the warehouse design problem, and has provided

much of the impetus.f or the study of the efficient design problem. For the

case where the distances are Euclidean, Kuhn [111 has demonstrated that the

set of all Pareto optimal solutions is just the convex hull of p1, ..., p .

Subsequently Wendell, Hurter, and Lowe [171 have studied the proble~ for

• the case where the distances are distances, and concentrate upon developing

an algorithm for finding all Pareto optimal solutions when p = 1. Their

work has in turn motivated work by Chalinet and Francis, who give a geo-

metrical solution procedure [1], as well as an order in log m algorithm [2]

for the case p 1.

At this point we give an overview of the paper. Section 2 concentrates

on the contour—envelopes of designs. Gikren a design 5, E(S) denotes the
‘a

contour—envelope of S, where E(S) — ii Cx € L : f~ (x) < G ~(S)}. A design
i—i

S is always contained (or enveloped) in its contour—envelope, which is an

intersection of contour sets. The remaining sections are devoted to estab-

lishing that conditions called the contour—envelope (C—E) conditions provide

necessary and sufficient conditions for a design to be efficient. For the

L design problems discussed above, a design S satisfies the C—E conditions if

and only if the area of E(S)—S is zero. In order for the C—E conditions to

3
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r ~
• characterize efficient designs, the functions 

~~~~~~~ 
f,~ must be suffi-

ciently well structured. In Section 3 we take L to be a subset of R’~, and

refine the definition of a design. We show that if the disutility func-

tions f1, 
~~~ 

f~ are in e a s u r a b 1 e , b o u n d e d above, and have

no “flat spots” (contour lines of positive measure, or area) then any eff i—

• cient design satisfies the C—E conditions. When the disutility functions

have flat spots, efficient designs need not satisfy the C—E conditions. In

Section 4 we establish that if the functions f1, ..., f,~ are bounded above,

and are lower semicontinuous (implied by continuity) then any design satis-

fying the C—E conditions is efficient. Also we give an example showing if

the lower semicontinuity assumption is omitted (and replaced by an upper

semicontinuity assumption) that a design can satisfy the C—E conditions and

yet not be efficient. In Section 5 we tie results of earlier sections to-

gether to obtain necessary and sufficient conditions for the C—E conditions

to characterize efficient designs, and investigate additional results which

can be obtained when the disutility functions are convex.

• In the analysis of Sections 3 through 5 we make extensive use of

Lebesgue measure theory. However, by thinking of a measurable function as

an integrable function, and the measure of a set as the area (or volume,

or hypervolume) of a set, most of the analysis should be accessible with

knowledge of measure theory being unnecessary. Likewise, by thinking of

the supremum (or sup) of a function as the maximum (or max) of a function,

little or no insight is lost, since the maximum and supremum are identical

whenever the maximum exists.

4
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2. INITIAL RESULTS: THE CONTOUR-ENVELOPE

In this section we give an abstract statement of the design problem,

and present initial results, concentrating on the contour—envelope.

We assume given an arbitrary nonempty set L, as well as real—valued

disutility functions f1, ..., f which have domain L and are bounded above

on L. For each x€L we define the vector function

f(x) (f
1
(x), 

~~~~~~~~

For every noneuipty subset S of L we define

G~ (S) = sup{f~ (x) : x E 5) , 1 < i < in;

G(S) — (G1(S), i . .,  G (S));

E(S) = Cx € L : f(x)  < G( S) }

in
= n Cx € L : f~ (x) < G ~(S)}

i—i -

We note the assumption that f
1 
is bounth.. above on L guarantees that

G~(S) is a (finite) real number for 1 < i < in. We assume given some pro-

perty, say Property P, such that a subset S of L is a design if S has

Property P, and denote by D the collection of all designs. For each S€D

we call C(S) the design disutility vector, and E(S) the contour—envelope

of S. Given any S€D we denote by DE(S) the collection of all designs which

are contained in E(S). We shall see that if S€D then S€DE(S) and so DE(S)

is always nonempty. Also, we define a design S”~ to beefficient if whenever any

design S satisfies C(S) < C(S*), then it must be true that G(S) =

and denote by D* the collection of all efficient designs.

A~ immediate consequence of the definitions is

Lemma 1. (a) If S€D then SCE(S) and S€DE(S).

(b) Given S and S’€D, we have S’€DE(S) if f G(S’) < G(S).

We can now use the lemma to obtain equivalent conditions for a design to

be efficient.

5
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Theorem 1. The following conditions are equivalent:

(a) S€D*

(b) S€D and S’€DE(S) implies C(S’) = C(S),

(c) S€D and DE(S)CD*.

Proof. (a) implies (b): Let ScD and S’€DE(S). Lemma 1(b) implies

• G(S’)< G(S), so S€D* implies C(S’) C(S).

(b) implies (c): Let S€D and S’€DE(S). If S”€D and G(S”) < G(S’),

then G(S’) = C(S) gives G(S”) < G(S), so that Lemma 1(b) gives S”€DE(S).

Hence, by hypothesis,G(S”) = C(s) and so G(S) = G(S’) gives G(S”) = G(S’),

implying S’€D*, that is, DE(S)CD*.

(c) implies (a): Given S€D , Lemma 1(a) gives SoDE(S), so DE(S) c

implies S€D*.

As an immediate consequence of Theorem 1, part b , we have

Corollary 1. If S€D and Cs) DE(S), then SED* .

Th~s corollary will guide the development in subsequent sections, where

we obtain conditions for a design to be essentially the same as its

contour—envelope. Of closely related interest is Lemma 2, in preparation

for which we need several definitions. Given any vector k in R
in
, we denote

by C(k) the following set:

in
C(k) — Cx € L  : f(x) < 1€) — ii Cx ~ L : f . (x) < k ~ }

1 
•

and call C(k) a contour set of f of value k. A set C is a contour set (of

f) if and only if there exists some k in R’asuch that C C(k). We note , for

S€D , that E(S) — C(G(S)).

We now have

Lemma 2. Given S€D , we have S”E(S) if f S is a contour set of f.

Proof. Clearly S E(S) implies S is a contour set of f. Conversely,

suppose S — C(k) for some k. The definition of C(k) and C(S) implies

6
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C(S) < k , and thus E(S) — Cx € L : f(x) < C(S)) c Cx € L : f (x)  < k }  —

C(k) = 5, By Lemma 1(a), SGE(S), and so it follows that S—E(S).
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3. NECESSARY CONDITIONS FOR EFFICIENCY

In this section we further refine our definition of a design, intro-

duce additional problem structure, and then, after developing the needed

machinery, establish necessary conditions for designs to be efficient.

These conditions show that designs are efficient when they are their own

contour—envelopes “almost everywhere.”

We first establish needed assumptions and definitions. We assume

that L is a Lebesgue—measurable subset of R~, with ii(L) < ~~~, and that f is

a measurable function from L into Rin, that is, f1, ... , f are

measurable. Also we assume f is bounded above on L. Given any

set T in R
n
, of positive measure, if z€T and TnN(z, s) has measure zero

for some positive epsilon (here N(z, ~
) is an open neighborhood with

center z and radius c) we call z an inessential point of T. Any point y

• 
• in T which is not an inessential point of T we call an essential point of T,

and denote by ess(T) the collection of all essential points of T. Given

a positive constant A, with A < ji(L), we now define a design S by stating

• that for S to satisfy property P means that S is a subset of L, of measure

A, such that S = ess(S), that is, every point in S is. an essential point.

We shall see that deleting the inessential points from a set of positive

measure leaves the measure of the set unchanged. Further, in many cases

inessential points constitute a mathematical pathology which cannot be

physically realized, in which case it is quite reasonable to assume de-

signs have no inessential points. The purpose of Lemmas 3 and 4 below is

• to eliminate such pathologies. For most purposes “essential points” may

• be thi ught of as just “points” , and ess(T) as just T.

• Given a set Q in R1
~ and a set I of indices, a collection F— (Ti : iel}

of open sets is called an op~n cover of Q if Q c u(T1 : i€I}.

8 4



In reference 8 (pps . 106—108), the Lindelöf theorem is given, a

• special case of which we state as

Lemma 3. If Q is a subset of R~ , and F is an open •:over of Q, then some

countably infinite subcollection-of F is also an open cover of Q.
• We can now eStablish

Lemma 4. Let T be a subset of R’1, of positive measure , and define

T’=ess(T). Then •T’ and T have the same measure , and ess(T ’) — T’.

Proof. Let I—T—T’, so that I is the collection of all inessential points

of T, and so I consists of all the points x in T for which there exists

c > 0 such that TnN has measure zero, where N N(x, c ). Since Nx x x x x

is an open set, if F is the collection of all such sets then F is clearly

an open cover of I. Lemma 3 then implies there is a countably infinite

• open subcover, say F’, of I, with F’ — (N : x€I’I, where PcI. It is a

basic result in measure theory (reference 15, p. 46) that the measure of

• the union of a countably infinite number of sets, each of which has measure

zero, is also zero, and hence u(N nT : x€I’} has measure zero. Thus, since

F’ an open subcover of I implies I c u {N n T : x€I’}, I has measure zero,

and hence T’ and T have the same measure.

Since T — T ’ut ,

T 11 N(x, c) CT’ n N(x , c)} u Ci ~ N(x, c))

• and ~i(I n N(x, e)] — 0, the remainder of the proof follows readily.

Remark 1. Due to Lemma 4 it is reasonable to assume that every point in

L, as well as every point in each design, is an essential point. Further,

if S c L and p(S) — A , then ess(S) is. a design.

L - _ _ _ _ _
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In order for efficIent designs to be effectively the same as their

contour—envelopes , it is necessary to rule out the case where the functions

• have “flat spots.” For example, take L = (0, ‘°) , A = 1, in = 1, f(x) — x

for 0 < x < .5, f(x) — .5 for . 5  < x < 2 (a f la t  spot) ,  f(x)  — x — 1.5 for

2 < x. Given the design S — [0, 1], C(S) — .5 and E(S) — [0, 2], and yet

S is clearly efficient.

Given the functions ~~~ 1 < i < i n , we define a contour line of f~ to

be the set (xeL~ : f~ (x) — k
~

}, where ki is any real number. (We note a

contour line need not actually be a line or even a curve.) We say that

has a flat spot if some con€our line of f~ has positive measure. Thus

has no flat spots if every contour line of f~ has measure zero. We say

that f has no flat spots if f~ has no flat spots for 1 
< i < in.

It is-also convenien t to define the function w(y), for every YER in
,

• by w(y) = ~i [C ( y ) ] .  The following result is proven in the appendix .

Lemma 5. If every f~ is measurable and if the function f has no flat

spots, then the function u(y), where

• w(y)~’iz(x€L : f(x) < y),

is continuous on Rin .

• We remark that Lemma 5 is false if f has flat spots.

Lemma 6. Suppose f has no flat spots . If y ,  ZERin with w(y) < A  < w(z), then

there exists x on the line segment j oining y and z such that w(x)  — A.

• Proof. For 0 < A < 1, define the function h by

h (A )  — w (Xz  + (l—X)y) .

For fixed z and y, Az + (l—X)y is continuous in A , and so , since w is

continuous by Lennna.5, h is the composition of two continuous functions and

hence is continuous. Since h(0) — w(y) and h(l) — w(z) we have h(O) <A<h(l),
and the intermediate value theorem now implies there exists A , 0 < A < 1,

10 
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such that h(A ) — A , so that

w(Az + (1—A)y) = A.

• With x — Az + (l—A)y the conclusion follows.

We note that w(y) > 0 for all yERin . The following lemma, proven in the

appendix, establishes A takes on values arbitrarily close to zero.

Lemma 7. For any c > 0 there exists ZERin 
such that w(z) < c.

In what follows, given a design 5, when we say S = E(S) almost every-

where (abbreviated a.e.) we mean, since S c E(S) by Lemma 1(a), that

K(S) — S has measure zero, which in turn means that S and E(S) have the

same measure, A. We can now establish the main result of this section.

We remark that the proof is constructive and , when •comb ined subsequently

with the results of Theorem 6, suggests one way of constructing efficient

designs.

• Theorem 2. Assume f has no flat spots. For any SeD, ~S’eD such that

G(S ’) < C(S) and 5’ — E(S’) a.e.; further, if A < ~.L[E(S)] then G(S’) # G(S).

Proof. Let SeD and v — C(S). Using Lemma 1(a) , we have

A < i ~[E(S)] — ~i(xeL : f(x)  < v }  =

By Lemma 7 there exists u~ eRin such that w(u ’) <A . Define u to be the vector

whose ith entry is the minimum of the ith entries in u’ and v, so that

u < u ’, u<v. Clearly w(u) < w(u’). Thus ~(u) < A < w(v). Lemma 6 now implies

there exists w on the line segment joining u and v such that w(w)  — A.

Further, if A < w(v) — 3I[E(S)], then clearly w v. Also, since w—Au+(1—A)v

for some A , O < A < 1 , and u < v, we have w < v.

Define S — C(w), so that ji(S) = A. Letting S’ — ess(S) and using

Remark 1 we conclude 5’ is a design. Since S’cS , G(S’) < w  Since

w < v  — C(S), and w v if A < ji[E(S)], we conclude G(S’) < C(S), and

11
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G(S ’) ~ C(S) if A < ~ [E(S) ] .  Further , since S ’CE ( S ’)  by Leimna 1(a) , and

since E(S’)  c S as G(S’)  < w , we have A — i.i(S ’) < ~ (E(S ’) ]  < i.t(S) — A, which

Implies 5’ = E(S ’) a.e.

As a corollary of Theorem 2 we have

Theorem 3. Assume f has no flat spots. If SED* then S — E(S) a.e.

• Proof. If S 
~ E(S) a.e. then A < ~(E(S)], in which case Theorem 2 implies

there~ exists a design s’ for which G(S’) < C(S) and G(S’) ,
~ G(S), contra-

dicting the fact that SeD*. Thus S — E(S) a.é.

I
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4. SUFFICiENT CONDITIONS FOR EFFICIENCY

In this section we establish conditions on the f unc tions in f such

that if SeD, and S E(S) a.e., then SeD*.

It is helpful f i~st to consider an example , Take L = [0,~o), A = 1,

in = 1, 1(x) = x for 0<  x < 1 and 1(x) = x + 1 for 1 < x. Consider the

designs s = [0 ,1] and 5’ — [0 ,1), for which C(S) = 2 and C(s’) = 1, so

tha t E(S) = [0 ,1], E(S’) = [0,1). Here S = E(S), but S~D*, since C(s’) <C(S).

However S ’ = E(S ’) and S’ED*. This example illustrates that a design can

be its own contour—envelope and yet not be efficient; further, such a

• situation occurs when f is discontinuous. More specifically, the function

f for this example is upper semicontinuous (USC). (For f to be USC means

that —f is LSC, as defined below.) Hence imposing upper semicontinuity

Is inadequate to guarantee that designs which are their own contour—

envelopes a.e. are efficient.

For 1 < i < in the function f 1 is said to be lower semicontinuous (LSC)

at yeL if , given any c > 0, there exists ~ > 0 such that f~ (y) < f~~(x) + c

for x € N (y, &) n L. The function f~ is LSC if f~ is LSC at every point In

L, l < i < m .  The function f is LSC if f~ is LSC for l < i < m .  For a good

summary discussion of LSC , see reference 13. (We note if the above example

were changed so that f(x )  — x for 0 < x < 1, and f(x )  = x + 1 for 1 < x ,

that f would be LSC.) Fortunately, we shall see that it is enough , for

the general problem, for f to be LSC in order to obtain the results we seek.

We now establ ish the following leunna.

Lemma 8. Suppose S’ ‘and S are measurable subsets of R”~, both of measure A >0 ,

that S’ c 5, and S — ess(S). If h is a real—valued and LSC function on S,

bounded from above on 5, then

sup {h(x) : x€ S ’}  — sup{h(x) : xeS} .

L Proof. Suppose to T :TI:E~ 
• .
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a ’ sup{h(x) : xeS ’} < a sup{h(x) xES}

(It is clear that a’ < a.) Let rj satisfy 0 < r~ < a—a ’ , and let

5” — {x€S : h(x) > a ’ + n }. Since a’ + n .< a, the definition of a implies

5” # 0, as otherwise a — sup{h(x) : xcS} < a ’ + r~ < a. Therefore, let yeS’:

we may choose c so that

0< c < h ( y ) — (a’ +n). (i)

Since h is LSC on S there exists ~S > 0 such that

h(y) — € < h(x) for x€N(y ,5) n 5, (ii)

so (i) and (ii) imply

a’ + n < h(x) for x € N(y , S) n S

and hence {N(y,d) n s} c 5”. Since S = ess(S), ji[N(y,sS) n SI > 0, and thus

> 0. Now clearly S’ n S” — 0 and so

A — Li(S’) C jj(S’) +~i(S”) — ii(S ’ U S”) < p(S) A,

giving a contradiction.

We remark that the above example of this section with h — f , where f

is USC instead of LSC, illustrates the lemma is false if h is not LSC.

We next establish the main result of this section.

Theorem 4. Assume I is LSC on L, and bounded above on L. If SeD and

S — K(S) a.e., then SeD*.

Proof. Let S satisfy the hypotheses. By Theorem 1, we know it is enough

H to establish C(S’) G(S) if 5’ e DE(S). With T E(S) — S , S’S 5’ n S,

S’T 5’ nT , we Iaiow S’ c E(S) and Sc K(S) imply 5’ = S’S u S’T and

• A — i.z(S’) — ii(S’S) + ~j(S’T). Since S — K(S) a.e., ~i(T) — 0, and thus

• 

. ~(S’T) — 0, giving j~i(S’S) — A. Now slnce• S’S c 5, ~(S’S) A —

S — ess(S) by hypothesis, and f
1 
is LSC on L, Lemma 8 implies, for

l < i < i n , that

14
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sup {f 1(x) : xeS ’S} — sup {f 1(x) : x€ S}

• and hence

C(S) — G(S’S). (i)

Since S’ S c S’ c E(S) ,  we have

G(S’S) < G(S’) < GEE(S)]. (ii)

The definitions of K(S) and C(S), and Lemma 1(a), give

GEE(S)] — C(S). (iii)

Prom (i), (ii), and (Iii) we have .C(s)  — G(S’), which completes the proof.

The following corollary of Theorem 4 gives some indication of how ex-

tensive the collection of all efficient designs can be. In particular,

every contour set of f of measure A contains an efficient design.

Corollary 2. Assume I is LSC on L, and bounded above on L. If S is any

contour set of f of measure A, and 5’ = ess(S), then S’€D*.

Proof. Since 5 is a contour set of f, S = E(S) by Lemma 2. Since 5’ C S,

E(S’) c E(S). Leimna 1 implies S c E(S). By Remark 1, S’ is a design. Thus

A — ~j(5’) < ii[E(S’)]< p[E(S)] = a(S) — A , and hence S’ = E(S) a.e. Theorem 4

now implies S’ED*.

15
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5. THE CONTOUR—ENVELOPE CONDITIONS, AND CONVEXITY

Given a design 5, we call the condition S K(S) a.e. the contour—

envelope condition. When f is bounded above, measurable, and has no flat

spots , we have seen that the contour—envelope conditions are necessary (but

not sufficient) for designs to be eff icient .  When I Is bounded above and

each f 1 is LSC , we have seen that the contour—envelope conditions are suf-

ficient (but not necessary) for designs to be efficient.  We define f to be

well—structured if f is bounded above, f~ is LSC 1 < i < in, and f has no flat

spots. It is known, because contour sets of LSC functions are relatively

closed in L , and such relatively closed sets are measurable, that LSC of a

real—valued function implies measurability. Hence if f is well—structured

the contour—envelope conditions are both necessary and sufficient. Further,

the assumption of no flat spots cannot be omitted if the contour—envelope

conditions are to be both necessary and sufficient. To summarize matters,

as a result of Theorems 3 and 4 we have

iheorem 5. Assume f is well—structured, and let SeD. We have SCD* if and

only if S — K(S) a.e.

As a result of Theorem 5 , we can readily strengthen Theorem 2 , to obtain

Theorem 6. Assume f is well—structured. For any SeD ~ S ’€D* such that

G( S’)  < C(S) .

- We note Theorem 6 implies D* is nonempty whenever D is nonempty .

- We shall now see that if f is convex (i.e., every f 1 is convex) and if

L is a convex set , then additional conclusions may be drawn about efficient

designs . For example , for any SeD , E(S) is always a convex set, and so

Theorem 5 implies any efficient design is a convex set a.e.

p
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To obtain additional results, some notation will be convenient. Following

reference 14, given any convex set C in ~
n we denote by int(C), ri(C),

cl(C), and aff(C), the interior, relative interior, closure, and affine

hull of C respectively. With these definitions we proceed to establish

• several necessary intermediate results.

Lemma 9. If C isa convex set in R~, of positive measure, then int(C) a rl(C) ~& 0.

Proof. If aff (C)  is contained in an intersection of hyperplanes, then )I (C) = 0,

as each hyperplane has measure zero. Thus aff(C) = Rn, in which case (ref er—

ence 14, p. 44, par. 6), ri(C) — int(C). By Theorem 6.2 of reference 14,

ri(C) ~

Lemma 10. If C is a convex set in R~ , of positive measure , then every open

set intersecting C also intersects int(C) .

Proof. Since c c cL(C) any open set T intersecting C intersects ci(C) as

well. Corollary 6.3.2 of reference 14 implies every open set intersecting

ci(C) intersects ri(C). Thus, using Lemma 9, if T intersects C then T inter-

sects int(C).

Corollary 3. If C is any convex set in R~ of positive measure , then C = ess(C),

that is , every point in C is an essential point.

Proof. Given any yeC and 6>0, it suffices to show C ri N (y , 6) contains a hyper—

sphere of positive radius. Given the hypotheses, since N(y,6) is an open

set intersecting C, Lemma- 10 implies 3. u € int(C) ii N(y,cS). Since u~e int(C)

~ ‘r>O such that N(u,’r) c C. Since u e N(y,t5) and N(y,~5) is an open set

~ r>0 such that N(u,r) c N(y,6). Letting c min(T,r) > 0, it is clear

that N(u,c) c C n N (y,6), which completes the proof.

As a consequence of Corollary 3 we have

Remark 2. Assume •L is a convex set. Any convex subset of L, having measure

A , is a design.

17
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Corollary 2, Remark 2, and basic convexity results give

Corollary 4. Assume f is convex and L is a convex set. Any contour set of

I of measure A is an efficient design. -

Finally, we establish

Theorem 7. Assume f is convex and well—sti uctured , and L is a convex set.

For any SeD the following are equivalent:

(a) SED*

(b) E (S)€ D

(c) E(S) €. D*.

Proof. (a) implies (b): If SED*, Theorem 5 implies S = K(S) a.e., implying

= A. Corollary 4 now implies K(S) € D.

(b) implies (c): Let S’ = K(S). Lemma 2 implies S’ = E(S’) a.e.

Thus, since S’eD , Theorem 5 implies S’eD*.

(c) implies (a): Let S’ — E( S) e D*, so that i,i(S’) = A. Lemma 1

implies 5 c E(S) = S’, and ~~ A i~
(S) < ~[E(S)] — A , implying S E(S) a.e.

Theorem 5 thus implies SeD*.

• 
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APPENDIX
-
• In reference 9, p. 38, two theorems say the following:

Theorem Al: If {E~} is an increasing sequence of measurable sets for which

lim {E} is measurable, then limo i i ( E ) — u (l lm~ E).

Theorem A2: If {E~} is a decreasing sequence of measurable sets for which

lim {E} is measurable and some ~~E) is finite, then ii(lim E
n
) — u r n  ii(E ).

We will apply these two theorems to establish the continuity of w(z)

•when f is measurable and f has no flat spots. We remark that for the case

~~~~~~~~ omega is defined on the reals Lemmas Al and A2 are related to having

omega continuous from below and from above respectively.

Subsequently, for convenience, we let e denote the vector in R
m having

all unit entries.

Lemma Al: Given y € R
m
, if f has no flat spots then, for any c > 0, there

exists a positive integer N
1 
such that

• w(y - e) > w(y) — e for any n > N
1
.

• Proof: For n = 1, 2, . . . ,  let

E = C ( y —~~~ e).

Then each E is measurable since L and f are measurable, and K C E c
n 1 2

Further it can be shown that

lim E~~= u E — E ~~~{x € L  : f(x) <y }
-

• n 11

L and f measurable imply E measurable.

Now we note that m
{C(y) — E} c u ~x € L : f~~(x) —

i—I

and, since contour lines of each f. have measure zero , we have

O < u(C(y) - E] < ~[ u {x € L : fi(x) - .y1}] - 0.

i—i

Thus ji (E) — ~.i(C(y)) u(y). By Theorem Al, when n increases,

1 1w(y — e) -~~ 3.L(K) , so w(y — — e) -‘~

In particular, for any e > 0, ~ N1 such that

lucy — - e) — w(y)I < c for all n > N1,

so that
1w(y) — c < w(y — ‘
~~~ e) for all n > N

1
.
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I
Lemma A2: Given y c ~

m
, assume

for some y > y, y° € R
m
.

(We note this assumption is valid since p(L) <

Given any c > 0, there exists a positive integer N2 such that

w(y + ‘
~~~ e) < u(y) + c for all n > N2.

Proof: Let E~ — C(y + e). Since L and f are measurable, each E~ is
measurable.

Also E
1 ~ 

E~ ~~ .... Further , it can be shown, when n increases, that

lirn E — fl K — C(y).n n

Thus, by Theorem A2,
1u(y + ;e) -‘ w(y).

Thus, given any £ > 0, ‘3 N2 such that

lw(y + e) — w(y)I < c for al l n > N2
so that

u(y + ‘~~~ e) < u(y) + c for all n > N2.

Theorem A3: If f has no flat spots then the function w is continuous.

Proof: Given any c > 0, we shall show “3 N such that
if I z4 — Y~ I .~ . 

‘
~~~ 

or , if
j .J

1 1
y — 1 e < z < y + ~~~e, (1)

then
Iw(z)  — u (y) < € , (2)

i.e., w(y) — c < u(z) < u(y) + c .  . (3)

From Lemmas Al and A2 with N — max (N1, N2) we have

• u(y + ‘~~~ e) < u(y) + £ (4)

- . and w(y) — c < u(y — ‘~~~ e). (5)

From (1), since u is nondecreasing we have

w(y — ‘
~~~ e) < u(z) < w(y +~~~ e). (6)

-- 
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Using (4) and (5) in (6) gives (3) and thus (2). Hence u is continuous.
Note that f does not have to be continuous for this proof to hold.
Len~ a A3: Suppose £ > 0. Then there is y € Rm with u(y) < c.
Proof: For each positive integer k, let Sk 

— {x € L : f(x) < (—k , ...,
Then each set has finite measure, and S1 ~ S2 ~ .... It follows by
Theorem ~U that

u( ti Sk) — u r n
k—i

but n S k O,

so liin it(S)— O.
Ic

Thus there is a positive integer k with i(Sk) < c. Then, if y — (—k, . . .,  —k),
w(y) — 

~~
5k~ 

< ~~ • 0

. 1 :  .

I
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